100% Private

Data Interchange Formats: Complete Conversion Guide

Master data interchange formats including CSV, JSON, XML, YAML, TOML, and INI. Learn when to use each format, how to convert between them without data loss, and best practices for handling nested structures, arrays, and type preservation.

Overview of Data Formats

Data interchange formats serve as the universal language between different systems, applications, and programming languages. Choosing the right format impacts performance, maintainability, and interoperability.

Why Format Choice Matters

  • Performance: Parsing speed and file size affect application responsiveness
  • Readability: Human-readable formats simplify debugging and configuration
  • Interoperability: Standard formats ensure cross-platform compatibility
  • Tooling: Popular formats have rich ecosystems of validators and converters
  • Schema support: Some formats enforce structure, others are flexible
Quick Start: ToolsDock offers 47+ data format converters. Browse all data converters

CSV: Comma-Separated Values

CSV is the simplest format for representing tabular data. Each line is a row, with values separated by commas (or other delimiters).

Structure

name,age,city,active
John Doe,32,New York,true
Jane Smith,28,Los Angeles,false
Bob Johnson,45,Chicago,true

Key Characteristics

  • Best for: Flat, tabular data with uniform structure
  • Strengths: Universal support, small file size, Excel/spreadsheet compatible
  • Limitations: No nested structures, no data types (all strings), limited metadata
  • Common delimiters: Comma (,), Tab (\t), Semicolon (;), Pipe (|)

CSV Gotchas

// Values with commas need quoting
"Johnson, Bob",45,"Chicago, IL",true

// Embedded quotes are doubled
"She said, ""Hello""",greeting

// European Excel uses semicolon delimiter
name;price;quantity
Apple;1,50;10  // 1,50 is decimal (European format)

CSV Tools

JSON: JavaScript Object Notation

JSON is the dominant format for web APIs and modern data interchange. Lightweight, human-readable, and natively supported in JavaScript.

Structure

{
  "users": [
    {
      "id": 1,
      "name": "John Doe",
      "active": true,
      "address": {
        "city": "New York",
        "zip": "10001"
      },
      "tags": ["admin", "developer"]
    },
    {
      "id": 2,
      "name": "Jane Smith",
      "active": false,
      "address": null,
      "tags": []
    }
  ]
}

Key Characteristics

  • Best for: Web APIs, configuration, data exchange between modern apps
  • Strengths: Compact, native JavaScript support, supports nesting, typed values
  • Data types: string, number, boolean, null, array, object
  • Limitations: No comments, no date type (use ISO strings), no binary data

JSON Best Practices

// Use camelCase or snake_case consistently
{"firstName": "John"} or {"first_name": "John"}

// ISO 8601 for dates
{"createdAt": "2024-03-15T10:30:00Z"}

// Null for missing values, not empty strings
{"phone": null}  // not {"phone": ""}

// Avoid deeply nested structures (>3 levels)
// Consider flattening or using references

JSON Tools

XML: Extensible Markup Language

XML is a markup language designed for documents and data with complex hierarchies. Widely used in enterprise systems, SOAP services, and configuration files.

Structure

<?xml version="1.0" encoding="UTF-8"?>
<users>
  <user id="1" active="true">
    <name>John Doe</name>
    <address>
      <city>New York</city>
      <zip>10001</zip>
    </address>
    <tags>
      <tag>admin</tag>
      <tag>developer</tag>
    </tags>
  </user>
</users>

Key Characteristics

  • Best for: Document-centric data, SOAP APIs, enterprise systems, RSS/Atom feeds
  • Strengths: Attributes and elements, namespaces, robust schema validation (XSD), XSLT transformations
  • Limitations: Verbose, slower parsing, larger file size, more complex
  • Special characters: Must escape < > & " '

XML vs JSON Trade-offs

Feature XML JSON
VerbosityHigh (tags everywhere)Low (minimal syntax)
AttributesYes (<user id="1">)No (use object properties)
CommentsYes (<!-- comment -->)No (workaround: "_comment" field)
Schema validationXSD, DTD, RelaxNGJSON Schema
Parsing speedSlowerFaster
File size30-50% largerSmaller

XML Tools

YAML: YAML Ain't Markup Language

YAML is a human-friendly data serialization format focused on readability. Popular for configuration files, CI/CD pipelines, and infrastructure-as-code.

Structure

users:
  - id: 1
    name: John Doe
    active: true
    address:
      city: New York
      zip: "10001"  # Quoted to preserve leading zero
    tags:
      - admin
      - developer
  - id: 2
    name: Jane Smith
    active: false
    address: null
    tags: []

# Comments are supported
database:
  host: localhost
  port: 5432

Key Characteristics

  • Best for: Configuration files, Docker Compose, Kubernetes, Ansible, CI/CD
  • Strengths: Very readable, supports comments, anchors for reuse, multi-line strings
  • Limitations: Whitespace-sensitive (indentation matters), slower parsing, security concerns (arbitrary code execution in some parsers)
  • Superset of JSON: Valid JSON is valid YAML (but not vice versa)

YAML Features

# Multi-line strings (preserve newlines)
description: |
  This is a long
  multi-line text
  with preserved newlines.

# Folded style (spaces between lines)
summary: >
  This text will be
  folded into a single
  line with spaces.

# Anchors and aliases (reuse blocks)
defaults: &defaults
  timeout: 30
  retries: 3

production:
  <<: *defaults  # Merge defaults
  host: prod.example.com

development:
  <<: *defaults
  host: dev.example.com

YAML Tools

Other Common Formats

TOML: Tom's Obvious Minimal Language

Designed for configuration files with a focus on being easy to read due to obvious semantics.

# TOML example
title = "Configuration File"

[database]
host = "localhost"
port = 5432
enabled = true

[database.credentials]
username = "admin"
password = "secret"

[[servers]]
name = "alpha"
ip = "10.0.0.1"

[[servers]]
name = "beta"
ip = "10.0.0.2"

Best for: Configuration files (Cargo, Hugo, pip). More explicit than YAML, less verbose than XML.

INI: Initialization Files

Simple key-value format with sections, used for legacy Windows applications and some config files.

; INI example
[database]
host=localhost
port=5432
enabled=true

[server]
name=Production
ip=10.0.0.1

Best for: Simple configurations, legacy systems, Git config (.gitconfig).

Properties Files (Java)

Key-value pairs used in Java applications, Spring Boot, and Android.

# Properties example
database.host=localhost
database.port=5432
database.enabled=true
app.name=MyApplication

Best for: Java applications, Spring configuration, Android strings.

Format Comparison Table

Feature CSV JSON XML YAML TOML INI
Human readable High High Medium Very high Very high High
Parser availability Universal Universal Universal Wide Growing Limited
Schema support No JSON Schema XSD, DTD Limited No No
Comments No No Yes Yes Yes Yes
Data types Strings only 7 types Text (typed via schema) 11 types 9 types Strings only
Nested structures No Yes Yes Yes Yes Limited
Arrays Rows only Yes Yes Yes Yes No
File size Smallest Small Large Medium Medium Small
Parsing speed Fastest Fast Slow Medium Medium Fast
Binary data No Base64 Base64 Base64 Base64 No

When to Use Each Format

Use CSV When

  • Data is naturally tabular (rows and columns)
  • Exporting/importing spreadsheet data
  • Simple data exchange with non-technical users
  • Working with data analysis tools (Pandas, R, Excel)
  • File size and parsing speed are critical

Examples: Sales reports, contact lists, survey results, database exports

Use JSON When

  • Building REST APIs or web services
  • Data exchange between JavaScript applications
  • Nested or hierarchical data structures
  • NoSQL databases (MongoDB, CouchDB)
  • Modern application configuration (when comments aren't needed)

Examples: API responses, app configuration, log aggregation, microservices communication

Use XML When

  • Working with SOAP web services
  • Document-centric data (books, articles, legal documents)
  • Enterprise systems with existing XML infrastructure
  • Strict schema validation is required
  • Need for attributes, namespaces, or XSLT transformations

Examples: RSS/Atom feeds, SVG graphics, SOAP APIs, Microsoft Office formats (.docx, .xlsx)

Use YAML When

  • Configuration files (Docker, Kubernetes, Ansible)
  • CI/CD pipeline definitions (GitHub Actions, GitLab CI)
  • Human-edited data files
  • Infrastructure as code
  • Need for comments and readability

Examples: docker-compose.yml, .gitlab-ci.yml, Kubernetes manifests, Ansible playbooks

Use TOML When

  • Application configuration files
  • Rust projects (Cargo.toml)
  • Python projects (pyproject.toml)
  • Want readability with less ambiguity than YAML

Examples: Cargo.toml, pyproject.toml, Hugo config

Use INI When

  • Simple configuration with sections
  • Legacy Windows applications
  • Git configuration
  • Flat key-value pairs with grouping

Examples: .gitconfig, php.ini, desktop entries on Linux

Conversion Best Practices

1. Schema Preservation

When converting between formats, maintain data structure and meaning:

// JSON to XML: Decide on attribute vs element strategy
// Option 1: Everything as elements
{"user": {"id": 1, "name": "John"}}
→ <user><id>1</id><name>John</name></user>

// Option 2: Use attributes for metadata
→ <user id="1"><name>John</name></user>

2. Handling Nested Data

Strategies for converting hierarchical data to flat formats:

// JSON with nesting
{
  "user": {
    "name": "John",
    "address": {
      "city": "NYC",
      "zip": "10001"
    }
  }
}

// Flattened CSV approach 1: Dot notation
user.name,user.address.city,user.address.zip
John,NYC,10001

// Flattened CSV approach 2: Separate tables
users.csv: id,name
addresses.csv: user_id,city,zip

3. Array Handling

Converting arrays between formats requires careful consideration:

// JSON array to CSV
{"user": "John", "tags": ["admin", "user"]}

// Option 1: Join with delimiter
user,tags
John,"admin;user"

// Option 2: Multiple rows (normalized)
user,tag
John,admin
John,user

// Option 3: Multiple columns
user,tag1,tag2
John,admin,user

4. Type Coercion

Be explicit about type handling:

// CSV to JSON: Decide on type inference
"123" → 123 (number) or "123" (string)?
"true" → true (boolean) or "true" (string)?
"2024-01-15" → keep as string or parse as date?

// Best practice: Provide options
- Auto-detect types
- Force string mode (preserve original)
- Use schema/type hints

5. Encoding and Special Characters

// Always use UTF-8 encoding
// Handle format-specific escaping:

CSV:  "She said, ""Hello"""
JSON: "She said, \"Hello\""
XML:  <msg>She said, &quot;Hello&quot;</msg>
YAML: msg: 'She said, "Hello"'

6. Batch Conversion Workflows

For converting multiple files:

  1. Validate input files before conversion
  2. Use consistent naming conventions for output
  3. Log conversion errors and warnings
  4. Preserve directory structure when appropriate
  5. Verify row/record counts match
  6. Sample-check converted data

Common Pitfalls and Solutions

1. Data Type Loss

Problem: Converting JSON to CSV loses type information.
Solution: Use type hints in column names (e.g., "age:number"), maintain separate schema files, or validate types after conversion.

2. Encoding Issues

Problem: Non-UTF-8 files cause corruption or parsing errors.
Solution: Always specify UTF-8. Use text encoding converter to normalize files first.

3. Nested Structure Flattening

Problem: Information loss when converting JSON to CSV.
Solution: Use dot notation for nested objects, serialize complex values as JSON strings, or split into multiple CSV files.

4. XML Attribute vs Element

Problem: Ambiguity when converting JSON to XML.
Solution: Establish convention: use attributes for metadata (IDs, types), elements for data. Document your choice.

5. Large Number Precision

Problem: JavaScript/JSON loses precision for integers > 2^53.
Solution: Use string representation for large numbers (IDs, timestamps), or use libraries that support arbitrary precision.

6. Date and Time Handling

Problem: Formats have different date representations.
Solution: Use ISO 8601 format (2024-01-15T10:30:00Z) across all formats. Store timezone information. Use Unix timestamp converter for standardization.

Data Format Conversion Tools

Popular Conversions

Specialized Conversions

Quick Decision Guide

Choose CSV if...
  • Data is flat/tabular
  • Target is Excel/spreadsheet
  • Maximum compatibility needed
Choose JSON if...
  • Building web APIs
  • Data has nested structures
  • Using JavaScript/Node.js
Choose XML if...
  • Enterprise/legacy integration
  • Need strict schema validation
  • Document-centric data
Choose YAML if...
  • Human-edited config files
  • DevOps/infrastructure code
  • Need comments and readability

All data format conversions on ToolsDock happen in your browser. No uploads, completely private. Browse our full collection of 47+ data converters.

Privacy Notice: This site works entirely in your browser. We don't collect or store your data. Optional analytics help us improve the site. You can deny without affecting functionality.